A rectifier is an electrical device that converts alternating current (AC), which periodically reverses direction, to direct current (DC) which flows in only one direction. The process is known as rectification. Physically, rectifiers take a number of forms, including vacuum tube diodes, mercury arc valves, solid state diodes, silicon-controlled rectifiers and other silicon-based semiconductor switches. Historically, even synchronous electromechanical switches and motors have been used. Early radio receivers, called crystal radios, used a “cat’s whisker” of fine wire pressing on a crystal of galena (lead sulfide) to serve as a point-contact rectifier or “crystal detector”.

Rectifiers have many uses, but are often found serving as components of DC power supplies and high-voltage direct current power transmission systems. Rectification may serve in roles other than to generate direct current for use as a source of power. As noted, detectors of radio signals serve as rectifiers. In gas heating systems flame rectification is used to detect presence of flame.

The simple process of rectification produces a type of DC characterized by pulsating voltages and currents (although still unidirectional). Depending upon the type of end-use, this type of DC current may then be further modified into the type of relatively constant voltage DC characteristically produced by such sources as batteries and solar cells.

A device which performs the opposite function (converting DC to AC) is known as an inverter.

Rectifier – Wikipedia, the free encyclopedia.

Posted in Free Energy, Word of the day | Tagged , , , , , , , , | 1 Comment


A dielectric is an electrical insulator that can be polarized by an applied electric field. When a dielectric is placed in an electric field, electric charges do not flow through the material, as in a conductor, but only slightly shift from their average equilibrium positions causing dielectric polarization. Because of dielectric polarization, positive charges are displaced toward the field and negative charges shift in the opposite direction. This creates an internal electric field which reduces the overall field within the dielectric itself. [1] If a dielectric is composed of weakly bonded molecules, those molecules not only become polarized, but also reorient so that their symmetry axis aligns to the field. [1]Although the term “insulator” implies low electrical conduction, “dielectric” is typically used to describe materials with a high polarizability. The latter is expressed by a number called the dielectric constant. A common, yet notable example of a dielectric is the electrically insulating material between the metallic plates of a capacitor. The polarization of the dielectric by the applied electric field increases the capacitors surface charge. [1]The study of dielectric properties is concerned with the storage and dissipation of electric and magnetic energy in materials.[2] It is important to explain various phenomena in electronics, optics, and solid-state physics.The term “dielectric” was coined by William Whewell from “dia-electric” in response to a request from Michael Faraday.[3

Dielectric – Wikipedia, the free encyclopedia.

Posted in Uncategorized | Tagged , , , | Leave a comment

Video: USC California Captures RF Signal From Elenin | R.I.B

I do not know if this is real or not, Have had the video since it came out the last day of August. If it is real, this is good for all of us. If not, then at least you may learn something new. Tell me your thoughts, I would love to hear them. We use RF and ELF signals in our device. Its the only justification I can come up with for this post.

Posted in Uncategorized | Tagged | Leave a comment

Ionizing radiation

Ionizing (or ionising) radiation is radiation with sufficient energy to remove an electron from an atom or molecule. This ionization produces free radicals, atoms or molecules containing unpaired electrons, which tend to be especially chemically reactive.

The degree and nature of such ionization depends on the energy of the individual particles (including photons), not on their number (intensity). In the absence of heating a bulk substance up to ionization temperature, or multiple absorption of photons (a rare process), an intense flood of particles or particle-waves will not cause ionization if each particle or particle-wave does not carry enough individual energy to be ionizing (an example is a high-powered radio beam, which will not ionize if it does not cause high temperatures). Conversely, even very low-intensity radiation will ionize at low temperatures and powers, if the individual particles carry enough energy (e.g., a low-power X-ray beam). In general, particles or photons with energies above a few electron volts (eV) are ionizing, no matter what their intensity.

Examples of ionizing particles are alpha particles, beta particles, neutrons, and cosmic rays. The ability of an electromagnetic wave (photons) to ionize an atom or molecule depends on its frequency, which determines the energy of its associated particle, the photon. Radiation on the short-wavelength end of the electromagnetic spectrum—high-frequency ultraviolet, X-rays, and gamma rays—is ionizing, due to its composition of high-energy photons. Lower-energy radiation, such as visible light, infrared, microwaves, and radio waves, are not ionizing.[1] The latter types of low-energy non-ionizing radiation may damage molecules, but the effect is generally indistinguishable from the effects of simple heating. Such heating does not produce free radicals until higher temperatures (for example, flame temperatures or “browning” temperatures, and above) are attained. In contrast, damage done by ionizing radiation produces free radicals, even at room temperatures and below, and production of such free radicals is the reason these and other ionizing radiations produce quite different types of chemical effects from (low-temperature) heating. Free radical production is also a primary basis for the particular danger to biological systems of relatively small amounts of ionizing radiation that are far smaller than needed to produce significant heating. Free radicals easily damage DNA, and ionizing radiation may also directly damage DNA by ionizing or breaking DNA molecules.

Ionizing radiation is ubiquitous in the environment, and also comes from radioactive materials, X-ray tubes, and particle accelerators. It is invisible and not directly detectable by human senses, so instruments such as Geiger counters are usually required to detect its presence. In some cases it may lead to secondary emission of visible light upon interaction with matter, such as in Cherenkov radiation and radioluminescence. It has many practical uses in medicine, research, construction, and other areas, but presents a health hazard if used improperly. Exposure to radiation causes damage to living tissue, and can result in mutation, radiation sickness, cancer,[2] and death.

via Ionizing radiation – Wikipedia, the free encyclopedia.

Posted in Uncategorized, Word of the day | Tagged , , , , , , , , , , , | Leave a comment


  Military laser experiment.jpg 

Composition Elementary particle
Statistics Bosonic
Group Gauge boson
Interactions Electromagnetic
Symbol γ, hν, or ħω
Theorized Albert Einstein
Mass 0
<1×10−18 eV/c²[1]
Mean lifetime Stable[1]
Electric charge 0
<1×10−35 e[1]
Spin 1
Parity -1[1]
C parity -1[1]
Condensed I(JPC) = 0,1(1)[1

In physics, a photon is an elementary particle, the quantum of the electromagnetic interaction and the basic unit of light and all other forms of electromagnetic radiation. It is also the force carrier for the electromagnetic force. The effects of this force are easily observable at both the microscopic and macroscopic level, because the photon has no rest mass; this allows for interactions at long distances. Like all elementary particles, photons are currently best explained by quantum mechanics and will exhibit wave–particle duality, exhibiting properties of both waves and particles. For example, a single photon may be refracted by a lens or exhibit wave interference with itself, but also act as a particle giving a definite result when quantitative momentum (quantized angular momentum) is measured.

The modern concept of the photon was developed gradually byAlbert Einstein to explain experimental observations that did not fit the classical wave model of light. In particular, the photon model accounted for the frequency dependence of light’s energy, and explained the ability of matter and radiation to be in thermal equilibrium. It also accounted for anomalous observations, including the properties of black body radiation, that other physicists, most notably Max Planck, had sought to explain using semiclassical models, in which light is still described by Maxwell’s equations, but the material objects that emit and absorb light are quantized. Although these semiclassical models contributed to the development of quantum mechanics, further experiments[citation needed] validated Einstein’s hypothesis that light itself is quantized; the quanta of light are photons.

In the Standard Model of particle physics, photons are described as a necessary consequence of physical laws having a certain symmetry at every point in spacetime. The intrinsic properties of photons, such as chargemass and spin, are determined by the properties of this gauge symmetry. The neutrino theory of light, which attempts to describe the photon as a composite structure, has been unsuccessful so far.

The photon concept has led to momentous advances in experimental and theoretical physics, such as lasersBose–Einstein condensationquantum field theory, and the probabilistic interpretation of quantum mechanics. It has been applied tophotochemistryhigh-resolution microscopy, and measurements of molecular distances. Recently, photons have been studied as elements of quantum computers and for sophisticated applications in optical communication such as quantum cryptography.


Posted in Uncategorized | Tagged , , , , , , , , , , , , , | Leave a comment


Ionization is the physical process of converting an atom or molecule into an ion by adding or removing charged particles such aselectrons or other ions. This is often confused with dissociation.

The process works slightly differently depending on whether an ion with a positive or a negative electric charge is being produced. A positively charged ion is produced when an electron bonded to an atom (or molecule) absorbs the proper amount of energy to escape from the electric potential barrier that originally confined it, thus breaking the bond and freeing it to move. The amount of energy required is called the ionization energy. A negatively charged ion is produced when a free electron collides with an atom and is subsequently caught inside the electric potential barrier, releasing any excess energy.

In general, ionization can be broken down into two types: sequential ionization and non-sequential ionization. In classical physics, only sequential ionization can take place; refer to the Classical ionization section for more information. Non-sequential ionization violates several laws of classical physics; refer to the Quantum ionization section.

Ionization – Wikipedia, the free encyclopedia.

Posted in Free Energy, Uncategorized, Word of the day | Tagged , , , , | Leave a comment


In physics, there are several kinds of dipoles:

  • An electric dipole is a separation of positive and negative charges. The simplest example of this is a pair of electric charges of equal magnitude but opposite sign, separated by some (usually small) distance. A permanent electric dipole is called an electret.
  • magnetic dipole is a closed circulation of electric current. A simple example of this is a single loop of wire with some constant current flowing through it.[1][2]
  • flow dipole is a separation of a sink and a source. In a highly viscous medium, a two-beater kitchen mixer causes a dipole flow field.
  • An acoustic dipole is the oscillating version of it. A simple example is adipole speaker.
  • Any scalar or other field may have a dipole moment.


The Earth’s magnetic field, approximated as a magnetic dipole. However, the “N” and “S” (north and south) poles are labeled here geographically, which is the opposite of the convention for labeling the poles of a magnetic dipole moment

Dipole – Wikipedia, the free encyclopedia.

Posted in Uncategorized, Word of the day | Tagged , , , , | Leave a comment